INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT132Quad 2-input NAND Schmitt trigger

Product specification
File under Integrated Circuits, IC06

September 1993

74HC/HCT132

FEATURES

· Output capability: standard

I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT132 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT132 contain four 2-input NAND gates which accept standard input signals. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

The gate switches at different points for positive and negative-going signals. The difference between the positive voltage V_{T+} and the negative voltage V_{T-} is defined as the hysteresis voltage V_{H-} .

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STIVIBUL	PARAMETER	CONDITIONS	НС	нст	ONIT	
t _{PHL} / t _{PLH}	propagation delay nA, nB to nY	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	11	17	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	24	20	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o) \text{ where:}$$

 f_i = input frequency in MHz

f_o = output frequency in MHz

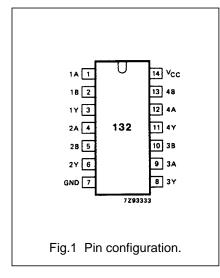
 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

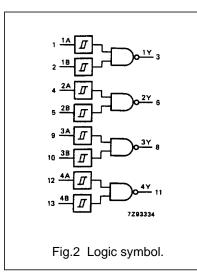
C_L = output load capacitance in pF

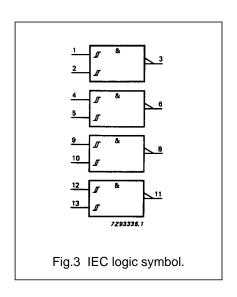
V_{CC} = supply voltage in V

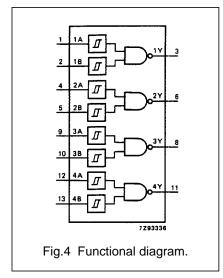
2. For HC the condition is $V_I = GND$ to V_{CC}

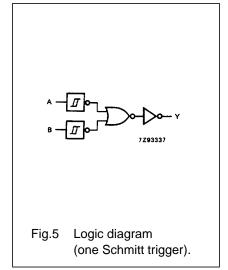
For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$


ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


74HC/HCT132


PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION
1, 4, 9, 12	1A to 4A	data inputs
2, 5, 10, 13	1B to 4B	data inputs
3, 6, 8, 11	1Y to 4Y	data outputs
7	GND	ground (0 V)
14	V _{cc}	positive supply voltage

FUNCTION TABLE

INP	JTS	OUTPUT
nA	nB	nY
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

Notes

H = HIGH voltage level
 L = LOW voltage level

APPLICATIONS

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators

74HC/HCT132

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Transfer characteristics are given below.

Output capability: standard

I_{CC} category: SSI

Transfer characteristics for 74HC

Voltages are referenced to GND (ground = 0 V)

					T _{amb} (°	LINIT	TEST CONDITIONS				
SYMBOL	PARAMETER				74H0			WAVEFORMS			
STWIDOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORWIS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
V _{T+}	positive-going threshold	0.7	1.18	1.5	0.7	1.5	0.7	1.5	٧	2.0	Figs 6 and 7
		1.7	2.38	3.15	1.7	3.15	1.7	3.15		4.5	
		2.1	3.14	4.2	2.1	4.2	2.1	4.2		6.0	
V_{T-}	negative-going threshold	0.3	0.63	1.0	0.3	1.0	0.3	1.0	V	2.0	Figs 6 and 7
		0.9	1.67	2.2	0.9	2.2	0.9	2.2		4.5	
		1.2	2.26	3.0	1.2	3.0	1.2	3.0		6.0	
V_{H}	hysteresis (V _{T+} – V _{T-})	0.2	0.55	1.0	0.2	1.0	0.2	1.0	V	2.0	Figs 6 and 7
		0.4	0.71	1.4	0.4	1.4	0.4	1.4		4.5	
		0.6	0.88	1.6	0.6	1.6	0.6	1.6		6.0	

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

0)/450	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
					74H			WAVEEODMO			
SYMBOL		+25			-40 TO +85		-40 TO +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(,	
t _{PHL} / t _{PLH}	propagation delay		36	125		155		190	ns	2.0	Fig.13
	nA, nB to nY		13	25		31		38		4.5	
			10	21		26		32		6.0	
t _{THL} / t _{TLH}	output transition time		19	75		95		110	ns	2.0	Fig.13
			7	15		19		22		4.5	
			6	13		16		19		6.0	

74HC/HCT132

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Transfer characteristics are given below.

Output capability: standard

I_{CC} category: SSI

Notes to HCT types

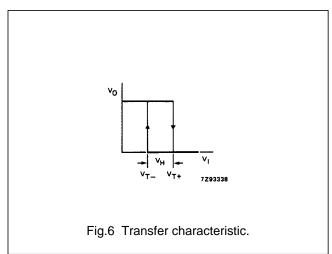
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

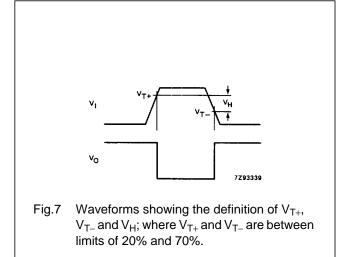
INPUT	UNIT LOAD COEFFICIENT
nA, nB	0.3

Transfer characteristics for 74HCT

Voltages are referenced to GND (ground = 0 V)

					T _{amb} (°		TEST CONDITIONS				
SYMBOL	PARAMETER						WAVEFORMS				
STIVIBUL	PARAIVIETER		+25		-40	to +85	-40 t	o +125	UNIT	V _{CC} (V)	WAVEFORING
		min.	typ.	max.	min.	max.	min.	max.			
V _{T+}	positive-going threshold	1.2	1.41	1.9	1.2	1.9	1.2	1.9	V	4.5	Figs 6 and 7
		1.4	1.59	2.1	1.4	2.1	1.4	2.1		5.5	
V_{T-}	negative-going threshold	0.5	0.85	1.2	0.5	1.2	0.5	1.2	V	4.5	Figs 6 and 7
		0.6	0.99	1.4	0.6	1.4	0.6	1.4		5.5	
V _H	hysteresis (V _{T+} – V _{T-})	0.4	0.56	_	0.4	_	0.4	_	V	4.5	Figs 6 and 7
		0.4	0.60	_	0.4	_	0.4	_		5.5	


AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

CYMPOL		T _{amb} (°C)								TEST CONDITIONS	
	PARAMETER				74HC	Т			UNIT		WAVEFORMS
SYMBOL	PARAWETER		+25		-40	to +85	−40 tc	+125	UNII	V _{CC} (V)	WAVEFORWIS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nA, nB to nY		20	33		41		50	ns	4.5	Fig.13
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.13

74HC/HCT132

TRANSFER CHARACTERISTIC WAVEFORMS

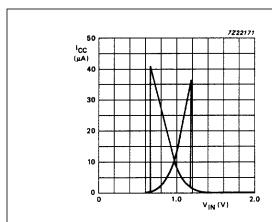


Fig.8 Typical HC transfer characteristics; $V_{CC} = 2 \text{ V}.$

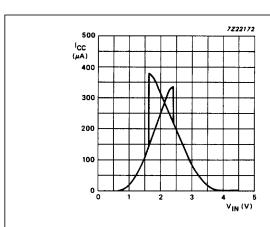


Fig.9 Typical HC transfer characteristics; $V_{CC} = 4.5 \text{ V}.$

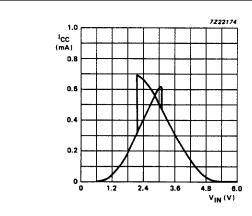


Fig.10 Typical HC transfer characteristics; $V_{CC} = 6 \text{ V}.$

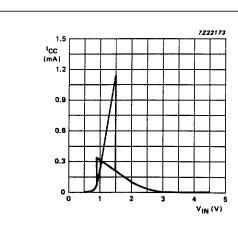
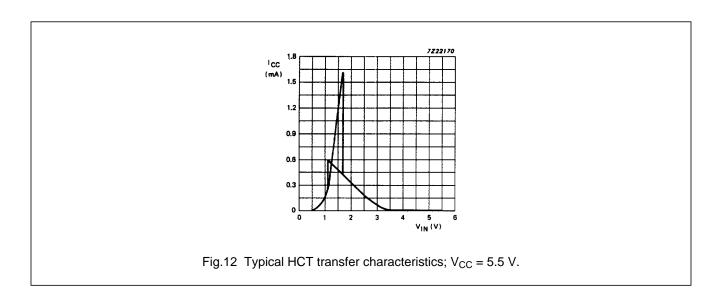
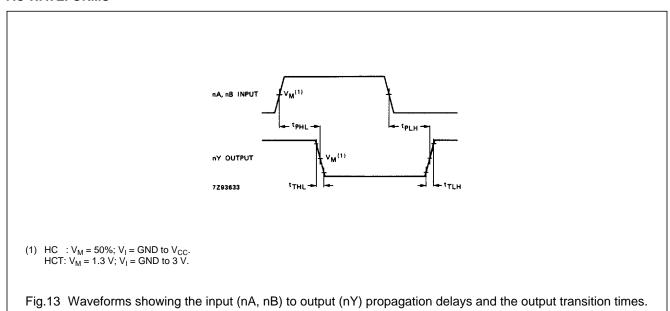



Fig.11 Typical HCT transfer characteristics; $V_{CC} = 4.5 \text{ V}.$


Philips Semiconductors Product specification

Quad 2-input NAND Schmitt trigger

74HC/HCT132

AC WAVEFORMS

74HC/HCT132

Application information

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

$$P_{ad} = f_i \times (t_r \times I_{CCa} + t_f \times I_{CCa}) \times V_{CC}$$
.

Where:

 P_{ad} = additional power dissipation (μW)

f_i = input frequency (MHz)

 t_r = input rise time (ns); 10% - 90% t_f = input fall time (ns); 10% - 90%

 I_{CCa} = average additional supply current (μA)

Average I_{CCa} differs with positive or negative input transitions, as shown in Figs 14 and 15.

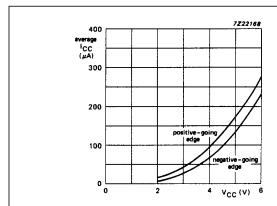


Fig.14 Average I_{CC} for HC Schmitt trigger devices; linear change of V_i between 0.1 V_{CC} to 0.9 V_{CC} .

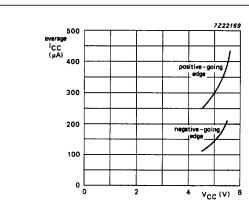
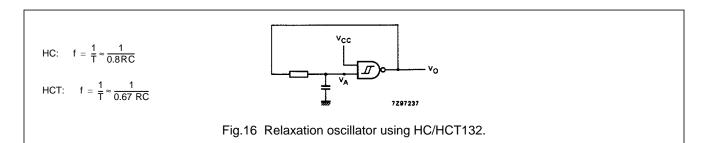



Fig.15 Average I_{CC} for HCT Schmitt trigger devices; linear change of V_i between 0.1 V_{CC} to 0.9 V_{CC} .

HC/HCT132 used in a relaxation oscillator circuit, see Fig.16.

Note to Application information

All values given are typical unless otherwise specified.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

74HC132D 74HC132DB-T 74HC132DB-T 74HCT132DB 74HCT132DB-T 74HCT132PW