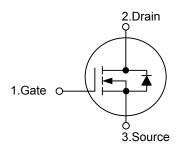
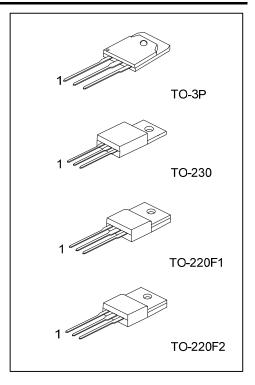
UTC UNISONIC TECHNOLOGIES CO., LTD

10N80 **Power MOSFET**

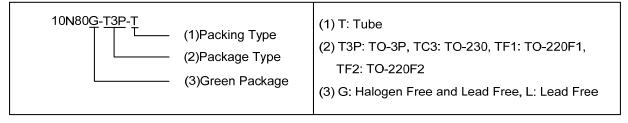
10A, 800V N-CHANNEL **POWER MOSFET**

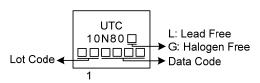

DESCRIPTION


The UTC 10N80 uses UTC's advanced proprietary, planar stripe, DMOS technology to provide excellent R_{DS(ON)}, low gate charge and operation with low gate voltages. This device is suitable for use as a load switch or in PWM applications.

FEATURES

- * $R_{DS(ON)} < 1.1\Omega @V_{GS} = 10 V$
- * Ultra Low Gate Charge (Typical 45nC)
- * Low Reverse Transfer Capacitance (CRSS = Typical 15pF)
- * Fast Switching Capability
- * Avalanche Energy Specified
- * Improved dv/dt Capability, High Ruggedness


SYMBOL



ORDERING INFORMATION

Ordering Number		Dackage	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
10N80L-T3P-T	10N80G-T3P-T	TO-3P	G	D	S	Tube	
10N80L-TC3-T	10N80G-TC3-T	TO-230	G	D	S	Tube	
10N80L-TF1-T	10N80G-TF1-T	TO-220F1	G	D	S	Tube	
10N80L-TF2-T	10N80G-TF2-T	TO-220F2	G	D	S	Tube	

MARKING

■ ABSOLUTE MAXIMUM RATINGS (T_C =25°C, unless otherwise specified)

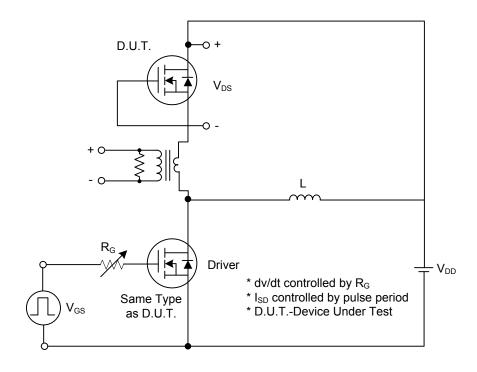
PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	800	V	
Gate-Source Voltage		V _{GSS}	±30	V	
Continuous Drain Current (T _C = 25°C)		I _D	10	Α	
Pulsed Drain Current (Note 2)		I _{DM}	40	Α	
Avalanche Current (No	te 2)	I _{AR}	10	Α	
Avalancha Energy	Single Pulsed (Note 3)	E _{AS}	920	mJ	
Avalanche Energy	Repetitive (Note 2)	E _{AR}	24	mJ	
Peak Diode Recovery	Peak Diode Recovery dv/dt (Note 4)		4.0	V/ns	
	TO-3P		240		
Dower Dissipation	TO-230		156	W	
Power Dissipation	TO-220F1 TO-220F2	P _D	66		
	TO-3P		1.92	- W/°C	
Linear Derating Factor	above TO-230		1.25		
(T _C = 25°C)	TO-220F1 TO-220F2		0.528		
Junction Temperature		T _J	+150	°C	
Storage Temperature	rage Temperature		-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

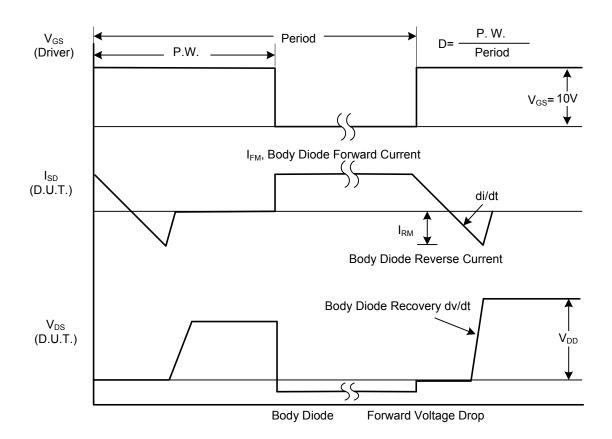
- 2. Repetitive Rating : Pulse width limited by maximum junction temperature.
- 3. L=17.3mH, I_{AS} =10A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C
- 4. $I_{SD} \le 10$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$ °C

■ THERMAL DATA

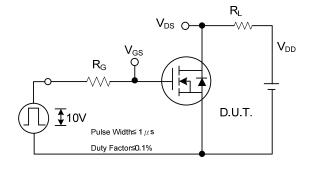
PARAMETER		SYMBOL	RATINGS	UNIT	
	TO-3P		40		
Junction to Ambient	TO-220F1	Δ		°C/W	
Junction to Ambient	TO-220F2	θ_{JA}	62.5	C/VV	
	TO-230				
	TO-3P		0.52	°C/W	
Junction to Case	TO-230	θ _{JC}	0.8		
Junction to Case	TO-220F1		4.00	C/VV	
	TO-220F2		1.89		

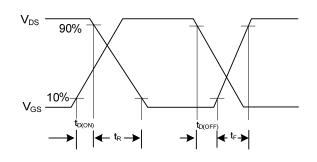

■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	800			V		
Drain Source Leakage Current	I _{DSS}	V _{DS} =800V, V _{GS} =0 V			10			
Drain-Source Leakage Current		V _{DS} =640V, T _C =125°C			100	μΑ		
Gate-Body Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 30 \text{ V}$			±100	nA		
Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS}/\Delta T_{J}$	I _D =250μA, Referenced to 25°C		0.98		V/°C		
ON CHARACTERISTICS								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$			5.0	V		
Static Drain-Source On-Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 5.0A$		0.9	1.1	Ω		
DYNAMIC PARAMETERS								
Input Capacitance	C _{ISS}	V _{DS} =25V, V _{GS} =0V,		2150	2800	pF		
Output Capacitance	Coss	f=1MHz		180	230	pF		
Reverse Transfer Capacitance	C _{RSS}			15	20	pF		
SWITCHING PARAMETERS								
Total Gate Charge	Q_G	-V _{DS} =640V, V _{GS} =10V, -I _D =10.0A (Note 1,2)		45	58			
Gate Source Charge	Q_GS			13.5		nC		
Gate Drain Charge	Q_{GD}			17				
Turn-ON Delay Time	t _{D(ON)}			50	110			
Turn-ON Rise Time	t_R	V _{DD} =400V, I _D =10.0A,		130	270	ns		
Turn-OFF Delay Time	t _{D(OFF)}	R _G =25Ω (Note 1,2)		90	190			
Turn-OFF Fall-Time	t _F]		80	170			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Maximum Continuous Drain-Source Diode	I _S				10.0			
Forward Current	IS				10.0	Α		
Maximum Pulsed Drain-Source Diode	I _{SM}				40.0			
Forward Current	ISM							
Drain-Source Diode Forward Voltage	V _{SD}	I _S =10.0 A,V _{GS} =0V			1.4	V		
Reverse Recovery Time	t _{rr}	$V_{GS} = 0V$, $dI_F / dt = 100 A / \mu s$,		730		ns		
Reverse Recovery Charge	Q _{rr}	I _S = 10.0A (Note 1)		10.9		nC		

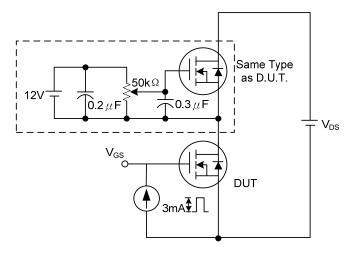

Notes: 1. Pulse Test: Pulse width \leq 250 μ s, Duty cycle \leq 2%.

^{2.} Essentially independent of operating temperature.

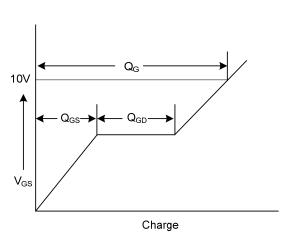

■ TEST CIRCUIT


Peak Diode Recovery dv/dt Test Circuit

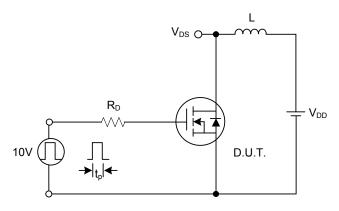
■ TEST CIRCUIT



Switching Test Circuit

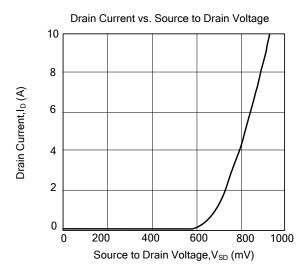


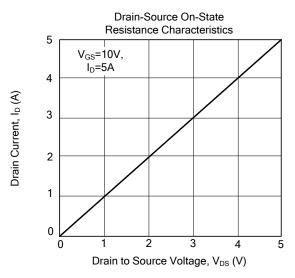
Power MOSFET

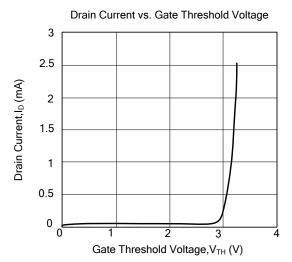

Switching Waveforms

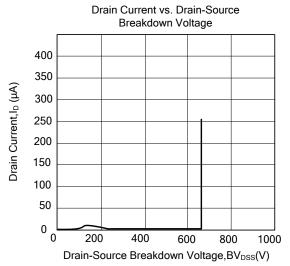
Gate Charge Test Circuit

Gate Charge Waveform




Unclamped Inductive Switching Test Circuit




Unclamped Inductive Switching Waveforms

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.