

LM217, LM317

Datasheet

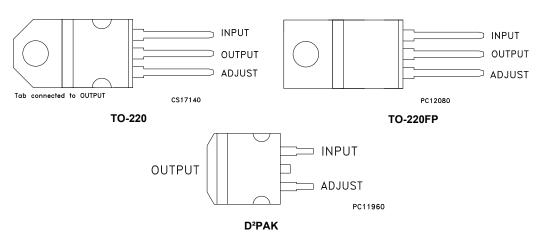
1.2 V to 37 V adjustable voltage regulators

Features

- Output voltage range: 1.2 to 37 V
- Output current in excess of 1.5 A
- 0.1% line and load regulation
- Floating operation for high voltages
- Complete series of protections: current limiting, thermal shutdown and SOA control

Description

The LM217, LM317 are monolithic integrated circuits in TO-220, TO-220FP and D²PAK packages intended for use as positive adjustable voltage regulators.


They are designed to supply more than 1.5 A of load current with an output voltage adjustable over a 1.2 to 37 V range.

The nominal output voltage is selected by means of a resistive divider, making the device exceptionally easy to use and eliminating the stocking of many fixed regulators.

Maturity status link			
LM217			
LM317			

1 Pin configuration

Figure 1. Pin connections (top view)

2 Maximum ratings

Symbol	Parameter	Value	Unit	
V _I - V _O	Input-reference differential voltage	40	V	
Ι _Ο	Output current	Output current		
			- 25 to 150	
T _{OP}	T _{OP} Operating junction temperature for:	LM317	0 to 125	°C
		-40 to 125		
PD	Power dissipation		Internally limited	
T _{STG}	Storage temperature	- 65 to 150	°C	

Table 1. Absolute maximum ratings

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2. Thermal data

Symbol	Parameter	D²PAK	TO-220	TO-220FP	Unit
R _{thJA}	Thermal resistance junction-ambient	62.5	50	60	°C/W
R _{thJC}	Thermal resistance junction-case	3	5	5	°C/W

3 Diagram

Figure 2. Schematic diagram

4 Electrical characteristics

 V_I - V_O = 5 V, I_O = 500 mA, I_{MAX} = 1.5 A and P_{MAX} = 20 W, T_J = - 55 to 150 °C, unless otherwise specified.

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
۸\/_	Line regulation	equiation $V_1 - V_0 = 3$ to 40 V			0.01	0.02	%/V
ΔV _O Line regulation		v] - v ₀ - 5 to 40 v			0.02	0.05	70/ V
		$V_0 \le 5 V$	T _J = 25°C		5	15	mV
ΔVO	Load regulation	I_{O} = 10 mA to I_{MAX}			20	50	IIIV
70	Load regulation	V _O ≥ 5 V,	T _J = 25°C		0.1	0.3	%
		I_{O} = 10 mA to I_{MAX}			0.3	1	/0
I _{ADJ}	Adjustment pin current				50	100	μA
ΔI _{ADJ}	Adjustment pin current	$V_{\rm I}$ - $V_{\rm O}$ = 2.5 to 40 V I _O = 10 mA to I _{MAX}			0.2	5	μA
V _{REF}	Reference voltage	$V_{I} - V_{O}$ = 2.5 to 40 V I _O = 10 mA to I _{MAX} $P_{D} \le P_{MAX}$		1.2	1.25	1.3	V
$\Delta V_O/V_O$	Output voltage temperature stability				1		%
I _{O(min)}	Minimum load current	V _I - V _O = 40 V			3.5	5	mA
1	Maximum land average	V _I - V _O ≤ 15 V, P _D < P _{MA}	x	1.5	2.2		
I _{O(max)}	Maximum load current	Maximum load current $V_I - V_O = 40 V, P_D < P_{MAX}, T_J = 25^{\circ}C$		0.4			Α
eN	Output noise voltage (percentage of V_{O})	B = 10 Hz to 100 kHz, T _J = 25°C			0.003	-	%
0) (5)		$T = 05^{\circ}0.6 = 400.11$	C _{ADJ} = 0	65			
SVR	Supply voltage rejection ⁽¹⁾	T _J = 25°C, f = 120 Hz	C _{ADJ} = 10 μF	66	80		dB

1. C_{ADJ} is connected between adjust pin and ground.

 $V_I - V_O = 5 \text{ V}, I_O = 500 \text{ mA}, I_{MAX} = 1.5 \text{ A} \text{ and } P_{MAX} = 20 \text{ W}, T_J = 0 \text{ to } 125 \text{ °C}, \text{ unless otherwise specified}.$

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
ΔV _O	Line regulation $V_1 - V_0 = 3 \text{ to } 40 \text{ V}$		T _J = 25°C		0.01	0.04	%/V
7.0	Line regulation	VI - VO - 5 to 40 V			0.02	0.07	%/V
		$V_0 \le 5 V$	T _J = 25°C		5	25	mV
ΔVO	Load regulation	I_{O} = 10 mA to I_{MAX}			20	70	IIIV
Δν0	Load regulation	V _O ≥ 5 V,	T _J = 25°C		0.1	0.5	%
		I_{O} = 10 mA to I_{MAX}			0.3	1.5	70
I _{ADJ}	Adjustment pin current		'		50	100	μA
ΔI _{ADJ}	Adjustment pin current	$V_{I} - V_{O} = 2.5 \text{ to } 40 \text{ V}$ $I_{O} = 10 \text{ mA to } I_{MAX}$			0.2	5	μA
V _{REF}	Reference voltage (between pin 3 and pin 1)	$V_{I} - V_{O} = 2.5 \text{ to } 40 \text{ V}$ $I_{O} = 10 \text{ mA to } I_{MAX}$ $P_{D} \leq P_{MAX}$		1.2	1.25	1.3	V
$\Delta V_0 / V_0$	Output voltage temperature stability				1		%
I _{O(min)}	Minimum load current	V _I - V _O = 40 V			3.5	10	mA
	$V_{I} - V_{O} \le 15 V, P_{D} < P_{MAX}$		х	1.5	2.2		
I _{O(max)}	Maximum load current	$V_{I} - V_{O} = 40 V, P_{D} < P_{MAX}, T_{J} = 25^{\circ}C$		0.4			A
eN	Output noise voltage (percentage of V_{O})	B = 10 Hz to 100 kHz, T _J = 25°C			0.003		%
0)/D		$T = 25^{\circ}O_{1}f = 400 Hz$	C _{ADJ} = 0		65		-10
SVR	Supply voltage rejection ⁽¹⁾	T _J = 25°C, f = 120 Hz	C _{ADJ} = 10 μF	66	80		dB

Table 4. Electrical characteristics for LM317

1. C_{ADJ} is connected between adjust pin and ground.

 V_I - V_O = 5 V, I_O = 500 mA, I_{MAX} = 1.5 A and P_{MAX} = 20 W, T_J = - 40 to 125 °C, unless otherwise specified.

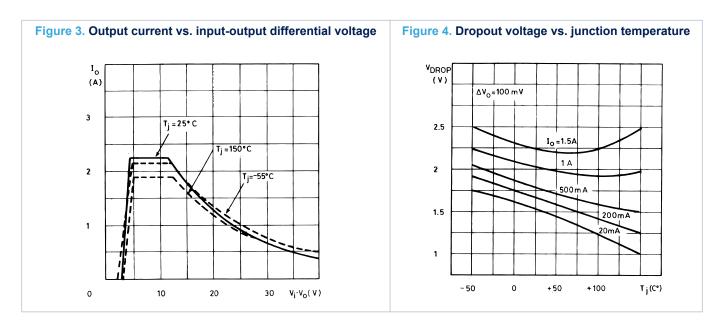
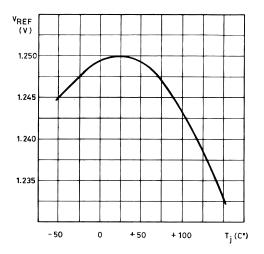

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
ΔV _O	Line regulation	$V_{\rm I} - V_{\rm O} = 3 \text{ to } 40 \text{ V}$			0.01	0.04	%/V
Δν0	Line regulation	VI - VO - 5 to 40 V			0.02	0.07	- %)/V
		V ₀ ≤ 5 V	T _J = 25°C		5	25	mV
ΔVO	Load regulation	I_{O} = 10 mA to I_{MAX}			20	70	IIIV
Δν0	Load regulation	$V_{O} \ge 5 V,$	T _J = 25°C		0.1	0.5	%
		I_{O} = 10 mA to I_{MAX}			0.3	1.5	70
I _{ADJ}	Adjustment pin current				50	100	μA
ΔI _{ADJ} Adjustment pin current		$V_{\rm I} - V_{\rm O} = 2.5 \text{ to } 40 \text{ V}$			0.0	_	
		I _O = 10 mA to 500 mA			0.2	5	μA
		V _I - V _O = 2.5 to 40 V					
V _{REF}	Reference voltage (between pin 3 and pin 1)	I _O = 10 mA to 500 mA		1.2	1.25	1.3	V
		$P_D \le P_{MAX}$					
$\Delta V_0 / V_0$	Output voltage temperature stability				1		%
I _{O(min)}	Minimum load current	V _I - V _O = 40 V			3.5	10	mA
1	$V_{I} - V_{O} \le 15 V$, $P_{D} < P_{MAX}$		х	1.5	2.2		
I _{O(max)}	Maximum load current	$V_{I} - V_{O} = 40 \text{ V}, P_{D} < P_{MAX}, T_{J} = 25^{\circ}C$		0.4			Α
eN	Output noise voltage (percentage of V_O)	B = 10 Hz to 100 kHz, T _J = 25°C			0.003		%
	Ourseling and a star (1)	T = 25°C f = 120 U	C _{ADJ} = 0		65		-
SVR	Supply voltage rejection ⁽¹⁾	T _J = 25°C, f = 120 Hz	C _{ADJ} = 10 μF	66	80		dB

Table 5. Electrical characteristics for LM317B


1. C_{ADJ} is connected between adjust pin and ground.

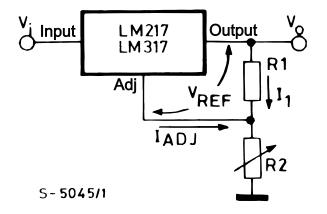
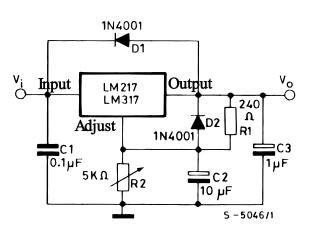

5 Typical characteristics

Figure 5. Reference voltage vs. junction

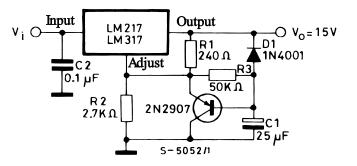
Figure 6. Basic adjustable regulator

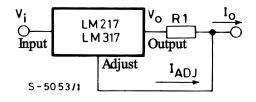

6 Application information

The LM217, LM317 provides an internal reference voltage of 1.25 V between the output and adjustments terminals. This is used to set a constant current flow across an external resistor divider (see Figure 6. Basic adjustable regulator), giving an output voltage V_0 of:

 $V_0 = V_{REF} (1 + R_2/R_1) + I_{ADJ} R_2$

The device was designed to minimize the term I_{ADJ} (100 µA max) and to maintain it very constant with line and load changes. Usually, the error term $I_{ADJ} \times R_2$ can be neglected. To obtain the previous requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum load current condition. If the load is insufficient, the output voltage will rise. Since the LM217, LM317 is a floating regulator and "sees" only the input-to- output differential voltage, supplies of very high voltage with respect to ground can be regulated as long as the maximum input-to-output differential is not exceeded. Furthermore, programmable regulators are easily obtainable and, by connecting a fixed resistor between the adjustment and output, the device can be used as a precision current regulator. In order to optimize the load regulation, the current set resistor R_1 (see Figure 6. Basic adjustable regulator) should be tied as close as possible to the regulator, while the ground terminal of R_2 should be near the ground of the load to provide remote ground sensing. Performance may be improved with added capacitance as follow:


- An input bypass capacitor of 0.1 µF
- An adjustment terminal to ground 10 μF capacitor to improve the ripple rejection of about 15 dB (C_{ADJ}).
- An 1 µF tantalum (or 25 µF Aluminium electrolytic) capacitor on the output to improve transient response. In addition to external capacitors, it is good practice to add protection diodes, as shown in figure below D1 protect the device against input short circuit, while D2 protect against output short circuit for capacitance discharging.


Figure 7. Voltage regulator with protection diodes

Note: D1 protect the device against input short circuit, while D2 protects against output short circuit for capacitors discharging.

Figure 8. Slow turn-on 15 V regulator

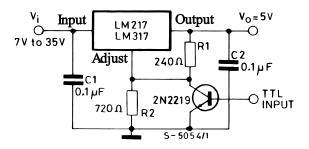
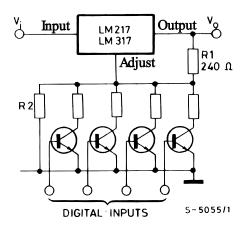
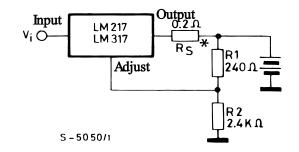


Figure 9. Current regulator



 $I_{O} = (V_{REF} / R_{1}) + I_{ADJ} = 1.25 V / R_{1}$


Figure 11. Digitally selected outputs

(R₂ sets maximum V₀)

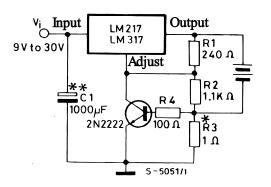

57

Figure 12. Battery charger (12 V)

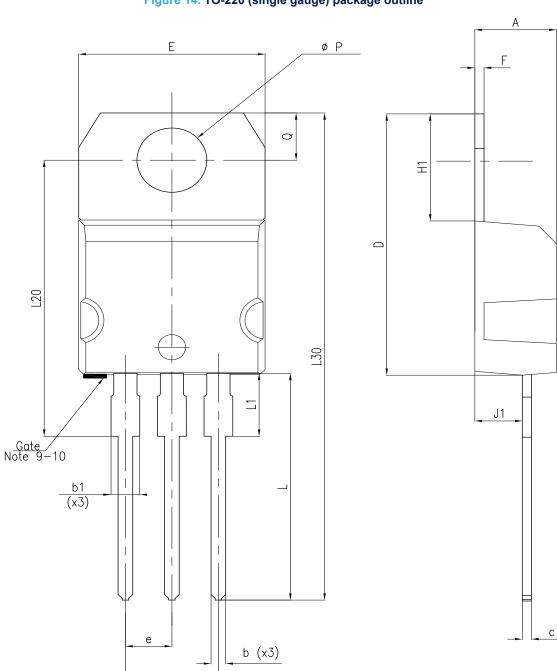
* R_S sets output impedance of charger $Z_O = R_S (1 + R_2 / R_1)$. Use of R_S allows low charging rates whit fully charged battery.

* R3 sets peak current (0.6 A for 10).

** C1 recommended to filter out input transients.

7 Device summary

Table 6. Device summary


Order codes					
TO-220 (single gauge)	TO-220 (double gauge)	D ² PAK (tape and reel)	TO-220FP		
LM217T	LM217T-DG	LM217D2T-TR			
LM317T	LM317T-DG	LM317D2T-TR	LM317P		
LM317BT					

8 Package information

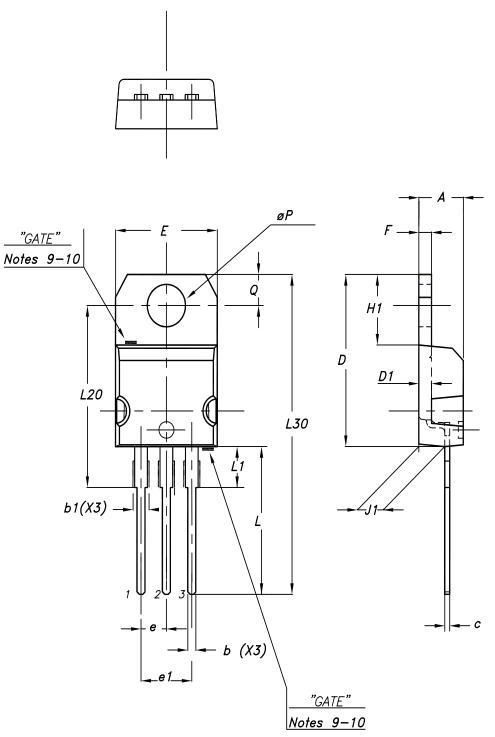
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

8.1 TO-220 (single gauge) package information

57

e1

Figure 14. TO-220 (single gauge) package outline


8174627_5

Dim.		mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
с	0.48		0.70
D	15.25		15.75
E	10.00		10.40
e	2.40		2.70
e1	4.95		5.15
F	0.51		0.60
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

Table 7. TO-220 (single gauge) mechanical data

8.2 TO-220 (dual gauge) package information

Figure 15. TO-220 (dual gauge) package outline

0015988_21_Type A

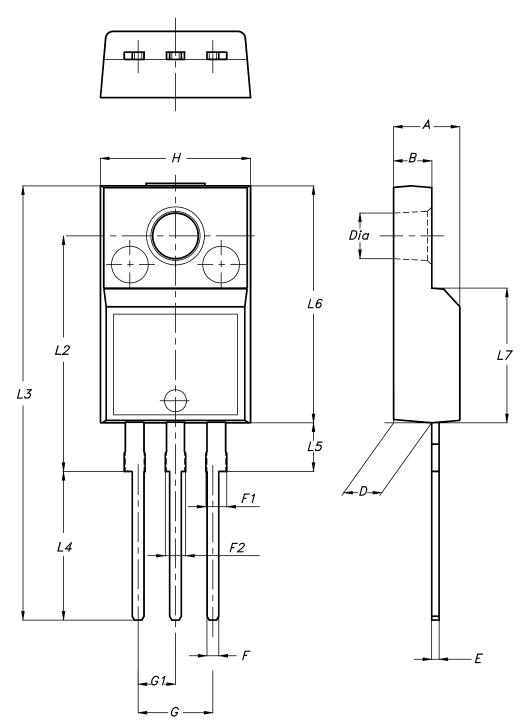
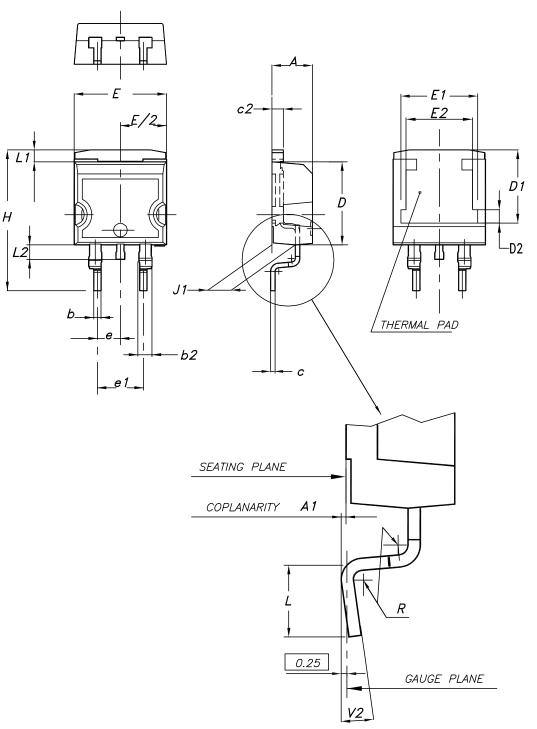

Dim.		mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

Table 8. TO-220 (dual gauge) mechanical data

8.3 TO-220FP type A package information

57

Figure 16. TO-220FP package outline


7012510_type_A

Dim.		mm	
Dini.	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Table 9. TO-220FP package mechanical data

8.4 D²PAK (SMD 2L STD-ST) type A package information

Figure 17. D²PAK (SMD 2L STD-ST) type A package outline

0079457_22_type A

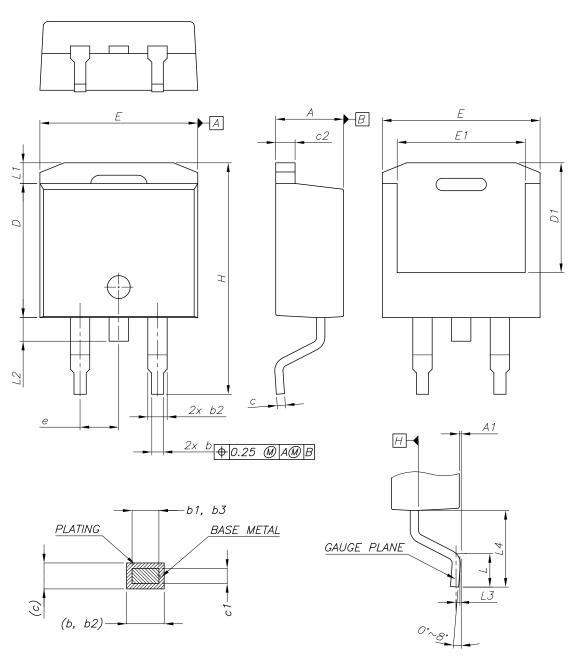
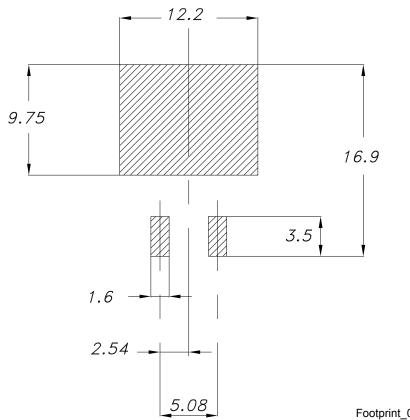

Dim.		mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
e		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

Table 10. D²PAK (SMD 2L STD-ST) mechanical data

8.5 D²PAK (ASE) type B package information

57

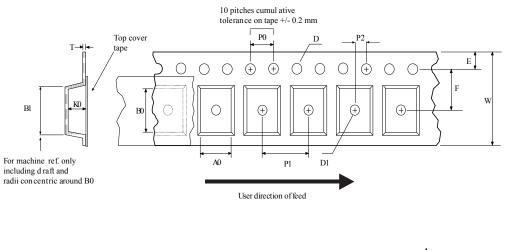
Figure 18. D²PAK (ASE subcon) type B package outline

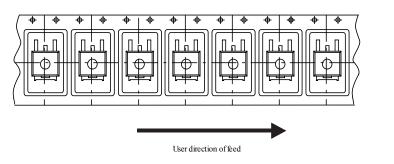


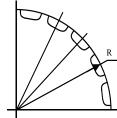
0079457_23_type B

Dim		mm	
	Min.	Тур.	Max.
A	4.36		4.56
A1	0		0.25
b	0.70		0.90
b1	0.51		0.89
b2	1.17		1.37
b3	1.36		1.46
С	0.38		0.694
c1	0.38		0.534
c2	1.19		1.34
D	8.60		9.00
D1	6.90		7.50
E	10.15		10.55
E1	8.10		8.70
e		2.54	
Н	15.00		15.60
L	1.90		2.50
L1			1.65
L2			1.78
L3		0.25	
L4	4.78		5.28

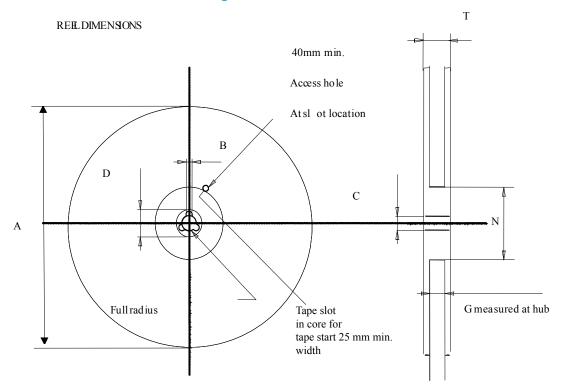
Table 11. D²PAK (ASE) type B mechanical data




Figure 19. D²PAK recommended footprint (dimensions are in mm)


Footprint_0079457

8.6 D²PAK packing information



Bending radius

Figure 21. Reel for D²PAK

Table 12. D²PAK tape and reel mechanical data

Таре				Reel		
Dim.	mm		Dim		mm	
	Min.	Max.	Dim.	Min.	Max.	
A0	10.5	10.7	А		330	
B0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
E	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1	Base qty		1000	
P2	1.9	2.1	Bulk qty		1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

Revision history

Table	13.	Document	revision	history
-------	-----	----------	----------	---------

Date	Revisio n	Changes
01-Sep-2004	10	Mistake VREF==> V _O , tables 1, 4 and 5.
19-Jan-2007	11	D ² PAK mechanical data has been updated, add footprint data and the document has been reformatted.
13-Jun-2007	12	Change values ΔI_{ADJ} and V_{REF} test condition of I_O = 10 mA to I_{MAX} ==> I_O = 10 mA to 500 mA on Table 5.
23-Nov-2007	13	Added Table 1.
06-Feb-2008	14	Added: TO-220 mechanical data Figure 14 on page 14 and Table 6 on page 13.
02-Mar-2010	15	Added: notes Figure 14 on page 14, Figure 15 on page 15, Figure 16 and Figure 17 on page 16.
17-Nov-2010	16	Modified: R_{thJC} valuefor TO-220 Table 3 on page 4.
18-Nov-2011	17	Added: order code LM317T-DG Table 1 on page 1.
13-Feb-2012	18	Added: order code LM217T-DG Table 1 on page 1.
12-Mar-2014	19	The part number LM117 has been moved to a separate datasheet. Removed TO-3 package. Updated the description in cover page
		Modified Table 1: Device summary, Table 3: Thermal data, Figure 1: Pin connections (top view), Section 4: Electrical characteristics, Section 5: Typical characteristics, Section 6: Application information, Section 7: Package mechanical data.
		Added Section 8: Packaging mechanical data. Minor text changes.
28-May-2018	20	Updated Section 8.5 D ² PAK (ASE) type B package information.

Contents

1	Pin c	onfiguration	.2		
2	Maxi	mum ratings	.3		
3	Diag	ram	.4		
4	Electrical characteristics				
5	Typical characteristics				
6	Application information				
7	Devi	Device summary			
8	Pack	Package information			
	8.1	TO-220 (single gauge) package information	14		
	8.2	TO-220 (dual gauge) package information.	16		
	8.3	TO-220FP type A package information	18		
	8.4	D ² PAK (SMD 2L STD-ST) type A package information	20		
	8.5	D ² PAK (ASE) type B package information	22		
	8.6	D ² PAK packing information			
Rev	ision I	nistory	28		

List of tables

Table 1.	Absolute maximum ratings	3
Table 2.	Thermal data	. 3
Table 3.	Electrical characteristics for LM217	5
Table 4.	Electrical characteristics for LM317	6
Table 5.	Electrical characteristics for LM317B	
	Device summary	
Table 7.	TO-220 (single gauge) mechanical data	16
Table 8.	TO-220 (dual gauge) mechanical data	18
Table 9.	TO-220FP package mechanical data	20
Table 10.	D ² PAK (SMD 2L STD-ST) mechanical data	22
Table 11.	D ² PAK (ASE) type B mechanical data	24
Table 12.	D ² PAK tape and reel mechanical data	27
Table 13.	Document revision history	28

List of figures

Figure 1.	Pin connections (top view)	2
Figure 2.	Schematic diagram	4
Figure 3.	Output current vs. input-output differential voltage	8
Figure 4.	Dropout voltage vs. junction temperature	8
Figure 5.	Reference voltage vs. junction	8
Figure 6.	Basic adjustable regulator	9
Figure 7.	Voltage regulator with protection diodes.	10
Figure 8.	Slow turn-on 15 V regulator	11
Figure 9.	Current regulator	11
Figure 10.	5 V electronic shut-down regulator	11
Figure 11.	Digitally selected outputs	12
Figure 12.	Battery charger (12 V)	12
Figure 13.	Current limited 6 V charger	12
Figure 14.	TO-220 (single gauge) package outline	15
Figure 15.	TO-220 (dual gauge) package outline	17
Figure 16.	TO-220FP package outline.	19
Figure 17.	D ² PAK (SMD 2L STD-ST) type A package outline	21
Figure 18.	D ² PAK (ASE subcon) type B package outline	23
Figure 19.	D ² PAK recommended footprint (dimensions are in mm)	25
Figure 20.	D ² PAK tape outline	26
Figure 21.	Reel for D ² PAK	27

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved